Using SCADA alarms to complement incomplete failure data

Over the past decades, the wind energy sector has been growing significantly and efforts are being made to minimise the overall cost of a wind farm. One of the main cost drivers is directly related to operation and maintenance (O&M) actions. Current tendencies in O&M practice are shifting from rather costly corrective strategies to preventive and predictive approaches. Crucial for setting up these cost effective strategies is to understand profoundly when and how wind turbine (WT) components fail. Moreover, the failure severity, in terms of caused downtime and repair cost, as well as the frequency of failure occurrences need to be known. These can be obtained from analysing historical failure databases and maintenance logbooks provided by manufacturers and operators. The components and their sub-assemblies have to be classified regarding their physical location and functionality, using a so called taxonomy or component breakdown. Then, the frequencies of component failures and the resulting WT downtimes are derived from the failure database. The outcome of the analysis can then be used to build reliability models and failure prediction tools in order to estimate the WT component degradation over time and to anticipate failures. However, there are still serious problems regarding recent practices and one of the main issues is lack of available failure data. Due to the lack of available data, many reliability models and maintenance decision tools are based on assumed failure rates – not representing sufficiently well the reality. Supervisory Control and Data Acquisition (SCADA) alarms are proposed to complement available failure logs with additional information. Most modern WTs are equipped with SCADA systems, generating a huge amount of information that can be obtained mostly free of additional cost.

In order to investigate the correlation between the alarms extracted from the SCADA system and the actual failure occurrences, the data from the most widely installed modern technologies had to be analysed. As older turbines are not necessarily equipped with SCADA systems or only operate relatively limited ones, they were excluded. The different technologies are indicated by their rated power and drive train setup – being either direct drive or geared WTs. As for confidentially reasons no manufacturer names can be published, the WT makes are indicated by the letters A to G. The respective SCADA system used within these turbines is referred to with the numbers 1 to 5. Turbine types A, D, E, F, G are equipped with a DFIG and types B and C with a synchronous generator. In total 440 WTs were analysed over a period of three years, resulting in 1320 operational years. An overall number of 653 failures and 1345036 alarms were registered and processed. The failures and alarms per turbine are displayed as rounded values.

Figure 1 displays the possible alarms for each SCADA system. Figure 2 shows the composition of the alarms actually recorded for each system within the given observation period. They consist of alarms related to a specific WT component, alarms due to extreme environmental conditions, and others that could not be assigned to any component, e.g. grid restrictions. Comparing the two figures, shows that for WT types A, B, C and D many weather related alarms were recorded, indicating extreme conditions, which could be responsible for certain component failures. Turbines B, C and D showed a quite similar share of the three alarm categories recorded. Also the share of possible alarms of these two SCADA systems are alike.

 

Figure reference: “Wind Turbine Failures – Tackling current Problems in Failure Data Analysis” by M D Reder et al (2016 J. Phys.: Conf. Ser. 753 072027). View the article online for updates and enhancements

Figures 3 and 4 represent the contribution of the component related alarms to the total number of recorded alarms. This is compared to the failures per year and turbine, normalised to the total number of failure occurrences. It is taken for granted that the CMS is connected to the SCADA system and functioning well in monitoring the turbine. This means that high numbers of alarms indicate a problem. Showing many alarms but few failures, indicates that the component is well monitored and failures are prevented by shutting down the turbine before they occur.

It is remarkable that many alarms due to environmental conditions but hardly any blades and controller alarms were recorded. At the same time, however, a large number of blade and controller failures appeared in the data set. The generator also showed relatively high failure rates as well as the second highest number of alarms. The alarms assigned to the generator had the highest share of all component related alarms. It is assumed that the generator is equipped with an extensive CMS to prevent failures. Being direct drive turbines, types B and C showed the lowest total number of failures. Many alarms were assigned to the controller and yaw system. The frequency converter also showed a large number of alarms, however, did not have any failures. The SCADA system actually indicated generator problems fairly well by reporting many alarms while very few generator failures occurred. Similar to type A, a high number of alarms due to heavy weather conditions can be related to controller and blade failures. Hence, it is assumed that for direct drive technologies the controller, yaw system and blades are suffering more likely from unfavourable weather conditions than other components. Type D turbines, represented the oldest technology with the lowest rated capacity per turbine. They showed the highest number of failures per WT, and a fairly high number of alarms due to environmental conditions. Many blade failures occurred, however, no alarm could be associated to the blades. The number of alarms related to the gearbox, the communication system and the bearings were quite high, indicating that the latter are well monitored by the SCADA system. The pitch system, the controller and the generator, however, did not provoke many alarms, although showing relatively high failure rates. This could be due to the fact, that the SCADA system in the older technology is not as advanced as it is in newer ones.

 

Figure reference: “Wind Turbine Failures – Tackling current Problems in Failure Data Analysis” by M D Reder et al (2016 J. Phys.: Conf. Ser. 753 072027). View the article online for updates and enhancements

The highest number of alarms was registered for WTs of type E. Similar to types A and D, the generator caused many failures whilst very few alarms were registered. Especially the hydraulic system showed an extremely large number of alarms. This leads to the theory, that for type E turbines the hydraulic system alarms can indicate failures of other components. Very few weather related alarms were observed. Like others, type E also showed very few alarms for the pitch and yaw system whilst suffering from many failures of these components. For WT types F, G no blade alarms but many yaw system and weather related ones were recorded. Vibrations in the foundation were indicated by the SCADA system as well as several failures of this part. Showing many alarms and very few failures, the pitch system, the generator and the hydraulic group seemed to be well monitored. The gearbox showed the most critical behaviour, with very few alarms but very high failure rates, and should be monitored better.

 

Figure reference: “Wind Turbine Failures – Tackling current Problems in Failure Data Analysis” by M D Reder et al (2016 J. Phys.: Conf. Ser. 753 072027). View the article online for updates and enhancements.

The comparison of recorded alarms and historical failure data for five different SCADA systems and WT types showed that for certain components there are significantly more alarms than actual failures – and contrariwise. In general, high numbers of component alarms and low failure rates indicate that the SCADA system is helping to avoid failures from occurring. Blade and controller failures showed to occur frequently in the presence of alarms indicating harsh environmental conditions. Nonetheless, it is very hard to obtain a global conclusion on how much the SCADA system is adding value to (missing) failure data, as the information provided by the different systems vary strongly. Thus, for each SCADA type the relation between component failures and the respective alarms was demonstrated. 

This is a summary of the original article: “Wind Turbine Failures – Tackling current Problems in Failure Data Analysis” by M D Reder et al (2016 J. Phys.: Conf. Ser. 753 072027). View the article online for updates and enhancements.
 

No Comments

    On Key

    Related Posts

    Digital Twin Technology: Discover the potential

    Digital… is the word that dominates the life of almost everyone and in many ways. That is why it is more than just a buzz word. It is the true reality of the world we live in. But what is Digital Twin technology?

    What is an automated predictive engine?

    Automation is far more than a buzz-word. It has become the centre of our lives. Many of us subconsciously do not notice, however, we are looking for automation in many aspects in the things we do.

    Edge Computing

    Technology has brought many advantages to our daily lives. Whilst those advantages have been revolutionary technology needs to evolve further and there are still many areas that have to be covered.

    A note to our visitors

    This website has updated its privacy policy in compliance with changes to European Union data protection law, for all members globally. We’ve also updated our Privacy Policy to give you more information about your rights and responsibilities with respect to your privacy and personal information. Please read this to review the updates about which cookies we use and what information we collect on our site. By continuing to use this site, you are agreeing to our updated privacy policy.

    Click here to view our updated Privacy Policy

    en_US

    Book A DEMO

    How can our predictive maintenance and asset optimisation platform do to make your day-to-day activities easier?

    With ANNEA’s domain knowledge in the renewable industry, engineering expertise, and predictive maintenance modelling techniques, we reduce operational costs while driving performance improvements, increasing energy production.

    Submit and our team will get in touch with you to schedule a platform demonstration.

    Book A DEMO

    How can our predictive maintenance and asset optimisation platform do to make your day-to-day activities easier?

    With ANNEA’s domain knowledge in the renewable industry, engineering expertise, and predictive maintenance modelling techniques, we reduce operational costs while driving performance improvements, increasing energy production.

    – No extra hardware required
    – Using only 10-min SCADA Data
    – Brand agnostic
    – All-in-one Platform

    Submit and our team will get in touch with you to schedule a platform demonstration.

    Want to join annea?

     

    Interested in joining our team? We’re always on the lookout for talented individuals who are passionate about making a difference in the renewable energy sector.

    If you believe you have what it takes to contribute to our innovative projects and drive positive change, we’d love to hear from you.

    Please fill out the form to submit your unsolicited application. Let’s work together to create a sustainable future!

    Want to ANNEA?

    Interested in joining our team? We’re always on the lookout for talented individuals who are passionate about making a difference in the renewable energy sector.

     

    Interested in joining our team? We’re always on the lookout for talented individuals who are passionate about making a difference in the renewable energy sector.

    If you believe you have what it takes to contribute to our innovative projects and drive positive change, we’d love to hear from you.

    Please fill out the form below to submit your unsolicited application. Let’s work together to create a sustainable future!