Digital Twin Technology: Discover the potential in a different world and apply it in the real-world

Digital… is the word that dominated the life of almost everyone and in many ways. That is why it is more than just a buzz word. It is the true reality of the world we live in. But what is the Digital Twin technology? Today, with the developments especially in the last decade, the term digital is now used for digitalisation and the usage of huge amounts of data.

In this post, we are filtering the complexity of the Digital Twin technology and explaining in the expertise of ANNEA when it comes to Digital Twin.

What is the Digital Twin Technology?

The Digital Twin technology stands for the digital representation of a physical object or system based on data, emitted by the same. Digital Twin technology has a huge impact on the product development processes involving engineering knowledge Today, Digital Twin are mainly used to predict various outcomes on different scenarios. As a result, it generates value for the businesses.

How do Digital Twin work?

In order to understand and leverage the potential of the Digital Twin technology, integrating the complex systems and obtaining data on the system and the entire ecosystem is required.

Engineers or data scientists usually start the process by building a digital version (replica) of a physical object or system in a programming environment. Real-word operational conditions, which affect the object or system are studied as well. After the study period, collected data are applied to the previously built digital version (replica) in order to simulate the real-word conditions and to compare the systems’ responses in the digital environment.

Characteristics of Digital Twin

Connectivity: The very core of the Digital Twin technology is relying on connectivity, which is usually provided by the IoT sensors and/or gateways.

Machine learning & democratisation of data: Considering Digital Twin as a concept of a digital technology, it is both starting point and the result of the homogenisation of the data.

Programmable: Benefiting from the artificial intelligence and machine learning technologies, Digital Twin can be programmed due to its nature and for the needed functions.

Digital traces: The Digital Twin actually leaves traces. These traces can be used as bookmarks to solve a problem through diagnosis when it occurs.

Modularity: It stands for the customisation by design. The customisation can be applied in various ways according to the needs and area of expertise.

Things that made Digital Twin possible:

No technology emerges with the snap of a finger. These are the technologies, which enabled the rise of the Digital Twin technology.  

Simulation: Our capabilities on digital environments are increasing on a daily basis. Inspired or provided by the real-word conditions or events, it is possible to create and test various scenarios focusing on “what if?” situations.

New sources of data: Applications of Digital Twin can be fed through data acquired by continuous real-time monitoring.

Interoperability: The integration of digital technologies in the industry has increased and defined new standards of communication through IoT technology.

Visualisation: The evolution of data visualisation made it easier to understand and interpret the data. It is important to remember that virtual reality (VR) and augmented reality (AR) are promising technologies to evolve data visualisation even further.

Instrumentation: The costs of IoT sensors are decreasing. They are becoming more precise, resistant, powerful and physically smaller.

Platform: Currently, access to cheaper and latest technology is much more common. Increased computing power, network solutions, data storage options are also crucial developments enabled the Digital Twin technology.

Benefits of Digital Twin for business/industries:

Digital Twin have some similarities with other components of Industry 4.0. Improving the machines’ production and increasing their efficiency can be considered the most common similarity. Due to its nature, Digital Twin are offering a huge benefit. They reduce business risk, by simulating different scenarios in a digital environment, allowing businesses to avoid expensive costs before commissioning the machines. Businesses are also benefiting from protecting the health and safety of their employees and business environments. The technology is reliable and accessible. It decreases the maintenance costs by notifying the future problems and downtimes in advance.

The added value of Digital Twin:

Learning from the past: Trace back historical data focusing on the components and performance.

Becoming aware of the present: Remain up-to-date constantly with real-time data.

Predicting the future: Combine historical and real-time data to predict the future conditions of the object(s) or system.

The relationship between Digital Twin and IoT:

In our previous blog post, we have explained IoT technology and why it is a game changer . The development of IoT technology is one of the factors that enabled and brought the Digital Twin technology to this exponential level today.

The connectivity of Digital Twin is created by IoT sensors placed on physical object(s) or system that obtains data, integrates and communicates data into a digital environment, allowing the digital version (replica) to be built.

IoT technology is minimising the extensive workload immensely and in an autonomous way. Digital Twin simulations with various scenarios now include fewer complex objects, providing benefits for businesses. Moreover, the IoT integration for maximum efficiency is often optimised by Digital Twin. It also makes the process easier for designers to figure out the necessary actions to be taken in advance before the physical version of the objects or systems are built.

The relationship between Digital Twin and predictive maintenance:

In real world conditions, it is complicated and costly to establishing the surroundings to test the reliability and failure behaviour of objects or systems. The Digital Twin technology is hefting away the complexity and costs related to real-world applications, in order to test the objects or systems in several scenarios on how they react to conditions. The technology can also be used for creating a failure-detection algorithm. As a result, the future health conditions of the objects or systems can be detected and actions can be taken in advance before the failures happen.

ANNEA’s unique Digital Twin technology:

The Digital Twin displayed in the ANNEA Platform are a digital representation of the physical wind turbines and their components. This is not just a 3D representation of the asset, nor a simple data visualisation as a monitoring solution. The ANNEA Digital Twin has the purpose of generating predictive value for enhancing operation and maintenance processes and performance optimisation. ANNEA’s expert team sets-up hybrid Digital Twin for each wind turbine and its main components.

By applying the Digital Twin technology, ANNEA is offering failure prediction and performance optimization. The technical solution of ANNEA uses a combination of different modelling techniques that are built up in a modular way on component and sub-component level. The modules include data driven artificial intelligence (AI), physical modelling, and normal behaviour modelling.

Contact to Expert Team of ANNEA! Receive detailed information about your specific needs!

What is next?

In our next article, you will be exploring Edge Computing, another important component of Industry 4.0.

Contact us

Email: info@annea.ai
Phone: +49 40 22866260

Follow Us

Products

ANNEA Platform

© 2021 annea.ai GmbH, All Rights Reserved.

en_USEnglish